Issue |
EPL
Volume 98, Number 1, April 2012
|
|
---|---|---|
Article Number | 16002 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Structural, Mechanical and Thermal Properties | |
DOI | https://doi.org/10.1209/0295-5075/98/16002 | |
Published online | 21 March 2012 |
Suppression of atomic friction under cryogenic conditions: The role of athermal instability in AFM measurements
1
School of Mechanical Engineering, Purdue University - West Lafayette, IN 47907, USA
2
School of Engineering, University of California Merced - Merced, CA 95343, USA
a
dong5@purdue.edu
b
amartini@ucmerced.edu
Received:
9
February
2012
Accepted:
8
March
2012
A theoretical investigation of the behavior of atomic friction at low temperatures is performed using a master equation method with a two-mass, two-spring Prandtl-Tomlinson model of an atomic force microscope experiment. A novel approach is taken in which two distinct instability mechanisms are introduced into the model: thermal activation is described by transition state theory with a prefactor associated with the frequency of the tip apex, and athermal instability is introduced by an Arrhenius-like equation with a prefactor associated with the characteristic frequency of the cantilever. Thermal instability causes the often reported decrease of friction with temperature followed by a stable low-friction region at high temperatures. However, the introduction of the athermal term that describes other instability mechanisms extends the predictive capability of the model such that it captures the friction plateau observed at very low temperatures.
PACS: 68.35.Af – Atomic scale friction / 07.79.Lh – Atomic force microscopes
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.