Issue |
EPL
Volume 98, Number 2, April 2012
|
|
---|---|---|
Article Number | 20001 | |
Number of page(s) | 5 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/98/20001 | |
Published online | 12 April 2012 |
Dynamical collapse of trajectories
1
Department of Mechanical Engineering, Eindhoven University of Technology - P.O. Box 513, 5600MB Eindhoven, the Netherlands, EU
2
Institute for Complex Systems and Mathematical Biology, SUPA, King's College, University of Aberdeen Aberdeen AB24 3UE, UK, EU
Received:
28
February
2012
Accepted:
26
March
2012
Friction induces unexpected dynamical behaviour. In the paradigmatic pendulum and double-well systems with friction, modelled with differential inclusions, distinct trajectories can collapse onto a single point. Transversal homoclinic orbits display collapse and generate chaotic saddles with forward dynamics that is qualitatively different from the backward dynamics. The space of initial conditions converging to the chaotic saddle is fractal, but the set of points diverging from it is not: friction destroys the complexity of the forward dynamics by generating a unique horseshoe-like topology.
PACS: 05.45.-a – Nonlinear dynamics and chaos / 02.30.Oz – Bifurcation theory
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.