Issue |
EPL
Volume 98, Number 5, June 2012
|
|
---|---|---|
Article Number | 50003 | |
Number of page(s) | 5 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/98/50003 | |
Published online | 06 June 2012 |
Semiclassical approximations for adiabatic slow-fast systems
Mathematisches Institut, Universität Tübingen - Germany, EU
Received:
27
March
2012
Accepted:
8
May
2012
In this letter we give a systematic derivation and justification of the semiclassical model for the slow degrees of freedom in adiabatic slow-fast systems first found by Littlejohn and Flynn (Phys. Rev. A, 44 (1991) 5239). The classical Hamiltonian obtains a correction due to the variation of the adiabatic subspaces and the symplectic form is modified by the curvature of the Berry connection. We show that this classical system can be used to approximate quantum-mechanical expectations and the time evolution of operators also in sub-leading order in the combined adiabatic and semiclassical limit. In solid-state physics the corresponding semiclassical description of Bloch electrons has led to substantial progress during the recent years, see works by Niu and coworkers. Here, as an illustration, we show how to compute the piezo-current arising from a slow deformation of a crystal in the presence of a constant magnetic field.
PACS: 03.65.Sq – Semiclassical theories and applications / 03.65.Vf – Phases: geometric; dynamic or topological / 77.22.Ej – Polarization and depolarization
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.