Issue |
EPL
Volume 98, Number 6, June 2012
|
|
---|---|---|
Article Number | 67001 | |
Number of page(s) | 5 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/98/67001 | |
Published online | 20 June 2012 |
Dirac theory and topological phases of silicon nanotube
Department of Applied Physics, University of Tokyo - Hongo 7-3-1, 113-8656, Japan
Received:
21
March
2012
Accepted:
22
May
2012
Silicon nanotube is constructed by rolling up a silicene, i.e., a monolayer of silicon atoms forming a two-dimensional honeycomb lattice. It is a semiconductor or an insulator due to relatively large spin-orbit interactions induced by its buckled structure. The key observation is that this buckled structure allows us to control the band structure by applying an electric field Ez. When Ez is larger than a certain critical value Ecr, by analyzing the band structure and also on the basis of the effective Dirac theory, we demonstate the emergence of four helical zero-energy modes propagating along the nanotube. Accordingly, a silicon nanotube contains three regions, namely, a topological insulator, a band insulator and a metallic region separating these two types of insulators. The wave function of each zero mode is localized within the metallic region, which may be used as a quantum wire to transport spin currents in future spintronics. We present an analytic expression of the wave function for each helical zero mode. These results are applicable also to germanium nanotubes.
PACS: 73.22.Pr – Electronic structure of graphene / 72.25.-b – Spin polarized transport / 03.65.Vf – Phases: geometric; dynamic or topological
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.