Issue |
EPL
Volume 98, Number 6, June 2012
|
|
---|---|---|
Article Number | 68004 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/98/68004 | |
Published online | 25 June 2012 |
Dynamics of a nanoscale rotor driven by single-electron tunneling
1
Max-Planck-Institute for the Physics of Complex Systems - Nöthnitzer Str. 38, 01187 Dresden, Germany, EU
2
Department of Applied Physics, Chalmers University of Technology - 41296 Göteborg, Sweden, EU
3
Department of Chemistry and Chemical Biology, Harvard University - 12 Oxford Street, Cambridge, MA 02138, USA
a
alexander.croy@chalmers.se
b
eisfeld@pks.mpg.de
Received:
3
January
2012
Accepted:
23
May
2012
We investigate theoretically the dynamics and the charge transport properties of a rod-shaped nanoscale rotor, which is driven by a similar mechanism as the nanomechanical single-electron transistor (NEMSET). We show that a static electric potential gradient can lead to self-excitation of oscillatory or continuous rotational motion. We identify the relevant parameters of the device and study the dependence of the dynamics on these parameters. We discuss how the dynamics are related to the measured current through the device. Notably, in the oscillatory regime we find a negative differential conductance. The current-voltage characteristics can be used to infer details of the surrounding environment which is responsible for damping.
PACS: 85.85.+j – Micro- and nano-electromechanical systems (MEMS/NEMS) and devices / 85.35.-p – Nanoelectronic devices
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.