Issue |
EPL
Volume 100, Number 2, October 2012
|
|
---|---|---|
Article Number | 26009 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Structural, Mechanical and Thermal Properties | |
DOI | https://doi.org/10.1209/0295-5075/100/26009 | |
Published online | 05 November 2012 |
Tunnel transport in nitrogen-incorporated rippled graphene
Nano-Scale Transport Physics Laboratory, School of Physics, University of the Witwatersrand Private Bag 3, WITS 2050, Johannesburg, South Africa
(a) Somnath.Bhattacharyya@wits.ac.za
Received: 2 July 2012
Accepted: 10 October 2012
The specific effect of the interplay of defects such as vacancies, ripples and impurities on the electronic properties of graphene is investigated using the tight-binding Hamiltonian. While the transport gap increases with the vacancy concentration, the incorporation of impurities enhances the resonant states in the vicinity of the Fermi level (EF). In addition to these defects, we find that the ripples, acting as multi-barrier structures on the graphene surface, can control the spread of delocalized states and the gap at EF. Extreme rippling results in resonant states and weak negative differential resistance (NDR) features. By incorporating impurities (mainly clustered nitrogen that forms barriers) in the rippled graphene, the NDR signature can be controlled. Thus, we show a possible route for improvement of the tunnel current-voltage characteristics by incorporating nitrogen atoms in defective graphene which is applicable to switching devices.
PACS: 68.65.-k – Low-dimensional, mesoscopic, nanoscale and other related systems: structure and nonelectronic properties / 68.65.Pq – Graphene films
© EPLA, 2012
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.