Issue |
EPL
Volume 101, Number 2, February 2013
|
|
---|---|---|
Article Number | 20008 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/101/20008 | |
Published online | 04 February 2013 |
Crowd avoidance and diversity in socio-economic systems and recommendations
1 Physics Department, University of Fribourg - CH-1700 Fribourg, Switzerland
2 Web Sciences Center, School of Computer Science and Engineering, University of Electronic Science and Technology of China - Chengdu 610054, PRC
Received: 22 August 2012
Accepted: 11 January 2013
Recommender systems recommend objects regardless of potential adverse effects of their overcrowding. We address this shortcoming by introducing crowd-avoiding recommendation where each object can be shared by only a limited number of users or where object utility diminishes with the number of users sharing it. We use real data to show that contrary to expectations, the introduction of these constraints enhances recommendation accuracy and diversity even in systems where overcrowding is not detrimental. The observed accuracy improvements are explained in terms of removing potential bias of the recommendation method. We finally propose a way to model artificial socio-economic systems with crowd avoidance and obtain first analytical results.
PACS: 07.05.Kf – Data analysis: algorithms and implementation; data management / 89.65.-s – Social and economic systems / 89.20.-a – Interdisciplinary applications of physics
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.