Issue |
EPL
Volume 102, Number 2, April 2013
|
|
---|---|---|
Article Number | 28012 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/102/28012 | |
Published online | 09 May 2013 |
When does cyclic dominance lead to stable spiral waves?
Department of Applied Mathematics, School of Mathematics, University of Leeds - Leeds LS2 9JT, UK, EU
(a) mmbs@leeds.ac.uk
(b) M.Mobilia@leeds.ac.uk
(c) A.M.Rucklidge@leeds.ac.uk
Received: 4 February 2013
Accepted: 11 April 2013
Species diversity in ecosystems is often accompanied by the self-organisation of the population into fascinating spatio-temporal patterns. Here, we consider a two-dimensional three-species population model and study the spiralling patterns arising from the combined effects of generic cyclic dominance, mutation, pair-exchange and hopping of the individuals. The dynamics is characterised by nonlinear mobility and a Hopf bifurcation around which the system's phase diagram is inferred from the underlying complex Ginzburg-Landau equation derived using a perturbative multiscale expansion. While the dynamics is generally characterised by spiralling patterns, we show that spiral waves are stable in only one of the four phases. Furthermore, we characterise a phase where nonlinearity leads to the annihilation of spirals and to the spatially uniform dominance of each species in turn. Away from the Hopf bifurcation, when the coexistence fixed point is unstable, the spiralling patterns are also affected by nonlinear diffusion.
PACS: 87.23.Cc – Population dynamics and ecological pattern formation / 05.45.-a – Nonlinear dynamics and chaos / 02.50.Ey – Stochastic processes
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.