Issue |
EPL
Volume 102, Number 4, May 2013
|
|
---|---|---|
Article Number | 44005 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/102/44005 | |
Published online | 12 June 2013 |
Time scales and structures of wave interaction exemplified with water waves
Institute for Analysis, J. Kepler University - Linz, Austria, EU
Received: 5 March 2013
Accepted: 15 May 2013
Presently two models for computing energy spectra in weakly nonlinear dispersive media are known: kinetic wave turbulence theory, using a statistical description of an energy cascade over a continuous spectrum (K-cascade), and the D-model, describing resonant clusters and energy cascades (D-cascade) in a deterministic way as interaction of distinct modes. In this letter we give an overview of these structures and their properties and a list of criteria about which model of energy cascade should be used in the analysis of a given experiment, using water waves as an example. Applying the time scale analysis to weakly nonlinear wave systems modeled by the focusing nonlinear Schödinger equation, we demonstrate that K-cascade and D-cascade are not competing processes but rather two processes taking place at different time scales, at different characteristic levels of nonlinearity and based on different physical mechanisms. Applying those criteria to data known from experiments with surface water waves we find that the energy cascades observed occur at short characteristic times compatible only with a D-cascade. The only pre-requisite for a D-cascade being a focusing nonlinear Schödinger equation, the same analysis may be applied to existing experiments with wave systems appearing in hydrodynamics, nonlinear optics, electrodynamics, plasma, convection theory, etc.
PACS: 47.27.Ak – Fundamentals / 52.25.Fi – Transport properties / 05.45.-a – Nonlinear dynamics and chaos
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.