Issue |
EPL
Volume 102, Number 5, June 2013
|
|
---|---|---|
Article Number | 57007 | |
Number of page(s) | 5 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/102/57007 | |
Published online | 21 June 2013 |
Quantum phase transitions in the Kitaev model on decorated lattices
Institute of Metal Physics - Vernadsky Street 36, 03142 Kiev, Ukraine
Received: 23 November 2012
Accepted: 29 May 2013
We have proposed an exactly solvable model defined on 2D decorated lattices of two types. The ground-state phase diagram of the system includes different topological phases with gapless chiral edge states. We show that two types of chiral spin liquid with gapless edge modes are realized on lattices with different symmetry. The phase transition between the topological phase with chiral gapped (Chern number zero) and the topological phase with chiral gapless edge modes (Chern number
) occurs in the model on the square (symmetric) decorated lattice. On the rectangular (asymmetric) decorated lattice the topological phase is defined by a chiral gapless (gapped) edge mode in the x (y) direction and a chiral gapped (gapless) edge mode in another y (x) direction. We show that a
Kitaev model on a decorated asymmetric square lattice exhibits the quantum phase transition between topological phases with equal Chern numbers.
PACS: 75.10.Jm – Quantized spin models, including quantum spin frustration / 05.30.Pr – Fractional statistics systems (anyons, etc.)
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.