Issue |
EPL
Volume 103, Number 1, July 2013
|
|
---|---|---|
Article Number | 18003 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/103/18003 | |
Published online | 24 July 2013 |
Line-defect–induced Fano interference in an armchair graphene nanoribbon
1 College of Sciences, Northeastern University - Shenyang 110004, China
2 Department of Physics, Jilin University - Changchun 130023, China
Received: 19 March 2013
Accepted: 27 June 2013
Electron transport through a metallic armchair graphene nanoribbon is theoretically investigated by considering the presence of line defect. The line defect is formed by the staggered stacking of the pentagons and heptagons. Our calculation results show that the line defect mainly destroys the electron transport in the conduction-band region by inducing the abundant Fano effects in the electron transport process. Moreover, the properties of the Fano effects are tightly dependent on the width M of the nanoribbon, and the results of are completely different from those of M > 17. The spectra of the density of electron states illustrate that the line defect induces some localized quantum states, and that the different localizations of these states lead to the distinct transport results. By analyzing the influence of the structure parameters, the Fano effects are described in detail. All the results demonstrate that such a structure can be a promising candidate for electron manipulation in graphene nanoribbon.
PACS: 81.05.U- – Carbon/carbon-based materials / 71.55.-i – Impurity and defect levels / 73.23.-b – Electronic transport in mesoscopic systems
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.