Issue |
EPL
Volume 103, Number 4, August 2013
|
|
---|---|---|
Article Number | 48003 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/103/48003 | |
Published online | 10 September 2013 |
Pair quenched mean-field theory for the susceptible-infected-susceptible model on complex networks
Departamento de Física, Universidade Federal de Viçosa - 36571-000, Viçosa, Minas Gerais, Brazil
Received: 10 May 2013
Accepted: 14 August 2013
We present a quenched mean-field (QMF) theory for the dynamics of the susceptible-infected-susceptible (SIS) epidemic model on complex networks where dynamical correlations between connected vertices are taken into account by means of a pair approximation. We present analytical expressions of the epidemic thresholds in the star and wheel graphs and in random regular networks. For random networks with a power law degree distribution, the thresholds are numerically determined via an eigenvalue problem. The pair and one-vertex QMF theories yield the same scaling for the thresholds as functions of the network size. However, comparisons with quasi-stationary simulations of the SIS dynamics on large networks show that the former is quantitatively much more accurate than the latter. Our results demonstrate the central role played by dynamical correlations on the epidemic spreading and introduce an efficient way to theoretically access the thresholds of very large networks that can be extended to dynamical processes in general.
PACS: 89.75.Hc – Networks and genealogical trees / 05.70.Jk – Critical point phenomena / 87.23.Ge – Dynamics of social systems
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.