Issue |
EPL
Volume 103, Number 5, September 2013
|
|
---|---|---|
Article Number | 50009 | |
Number of page(s) | 3 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/103/50009 | |
Published online | 01 October 2013 |
On the continuum time limit of reaction-diffusion systems
JSC, FZ Jülich - D-52425 Jülich, Germany, EU and Max Planck Institute for the Physics of Complex Systems - Nöthnitzer Strasse 38, D-01187 Dresden, Germany, EU
Received: 4 July 2013
Accepted: 5 September 2013
The parity-conserving branching-annihilating random walk (pc-BARW) model is a reaction-diffusion system on a lattice where particles can branch into m offsprings with even m and hop to neighboring sites. If two or more particles land on the same site, they immediately annihilate pairwise. In this way the number of particles is preserved modulo two. It is well known that the pc-BARW with m = 2 in 1 spatial dimension has no phase transition (it is always subcritical), if the hopping is described by a continuous time random walk. In contrast, the m = 2 1-d pc-BARW has a phase transition when formulated in discrete time, but we show that the continuous time limit is non-trivial: When the time step , the branching and hopping probabilities at the critical point scale with different powers of
. These powers are different for different microscopic realizations. Although this phenomenon is not observed in some other reaction-diffusion systems like, e.g., the contact process, we argue that it should be generic and not restricted to the 1-d pc-BARW model.
PACS: 05.10.Ln – Monte Carlo methods / 64.60.Ht – Dynamic critical phenomena / 82.20.Uv – Stochastic theories of rate constants
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.