Issue |
EPL
Volume 104, Number 2, October 2013
|
|
---|---|---|
Article Number | 27009 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/104/27009 | |
Published online | 26 November 2013 |
A dynamical crossover regime during evanescent-wave amplification
The Department of Physics and School of Engineering and Applied Sciences, Harvard University Cambridge, MA 02138, USA
Received: 10 September 2013
Accepted: 26 October 2013
A dynamical crossover regime is revealed when exposing a classical two-dimensional–ordered Josephson junction (JJ) array to evanescent waves and tuning the incident microwave power. At the lowest possible temperature for these experiments, 1.1 K, and at the lowest power setting, , evanescent waves are transmitted without loss and the resonance exhibits a quality factor of
. A second, smaller resonance, which evolves with increasing power from the main resonance, is also investigated. In contrast to the behavior of the main resonance, this second peak grows as the incident power is increased and does not maintain a fixed resonant frequency for temperatures less than the superconducting critical temperature of niobium. The tunability of both resonances is studied as a function of temperature and microwave power. Finally, we speculate that this dynamical crossover regime is evidence of a transition between two states of phase coherence where at low microwave power the JJ arrays are phase locked and at high microwave power the JJ arrays are unlocked.
PACS: 74.81.Fa – Josephson junction arrays and wire networks / 74.25.N- – Response to electromagnetic fields / 85.25.Cp – Josephson devices
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.