Issue |
EPL
Volume 104, Number 4, November 2013
|
|
---|---|---|
Article Number | 48001 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/104/48001 | |
Published online | 10 December 2013 |
Sculplexity: Sculptures of Complexity using 3D printing
Department of Physics, Imperial College London - London, SW7 2AZ, UK
Received: 6 September 2013
Accepted: 12 November 2013
We show how to convert models of complex systems such as 2D cellular automata into a 3D printed object. Our method takes into account the limitations inherent to 3D printing processes and materials. Our approach automates the greater part of this task, bypassing the use of CAD software and the need for manual design. As a proof of concept, a physical object representing a modified forest fire model was successfully printed. Automated conversion methods similar to the ones developed here can be used to create objects for research, for demonstration and teaching, for outreach, or simply for aesthetic pleasure. As our outputs can be touched, they may be particularly useful for those with visual disabilities.
PACS: 89.75.-k – Complex systems / 07.05.Tp – Computer modeling and simulation / 01.55.+b – General physics
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.