Issue |
EPL
Volume 104, Number 5, December 2013
|
|
---|---|---|
Article Number | 54003 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/104/54003 | |
Published online | 06 January 2014 |
High-energy tail of the velocity distribution of driven inelastic Maxwell gases
1 Raman Research Institute, Bangalore - Bangalore 560080, India
2 International Centre for Theoretical Sciences, TIFR - Bangalore 560012, India
Received: 12 July 2013
Accepted: 5 December 2013
A model of homogeneously driven dissipative system, consisting of a collection of N particles that are characterized by only their velocities, is considered. Adopting a discrete time dynamics, at each time step, a pair of velocities is randomly selected. They undergo inelastic collision with probability p. With probability , energy of the system is changed by changing the velocities of both the particles independently according to , where η is a Gaussian noise drawn independently for each particle as well as at each time steps. For the case , although the energy of the system seems to saturate (indicating a steady state) after time steps of O(N), it grows linearly with time after time steps of , indicating the absence of a eventual steady state. For , the system reaches a steady state, where the average energy per particle and the correlation of velocities are obtained exactly. In the thermodynamic limit of large N, an exact equation is obtained for the moment generating function. In the limit of nearly elastic collisions and weak energy injection, the velocity distribution is shown to be a Gaussian. Otherwise, for , the high-energy tail of the velocity distribution is Gaussian, with a different variance, while for the velocity distribution has an exponential tail.
PACS: 45.70.-n – Granular systems / 47.70.Nd – Nonequilibrium gas dynamics / 05.40.-a – Fluctuation phenomena, random processes, noise, and Brownian motion
© EPLA, 2013
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.