Issue |
EPL
Volume 105, Number 1, January 2014
|
|
---|---|---|
Article Number | 17008 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/105/17008 | |
Published online | 04 February 2014 |
Spin transport through a 1D Mott-Hubbard insulator of finite length
Center of Physics, University of Minho, Campus Gualtar - 4710-057 Braga, Portugal
Received: 30 October 2013
Accepted: 2 January 2014
We study low-energy spin and charge transport through a 1D Mott-Hubbard insulator of finite length L attached to Fermi liquid reservoirs, which, in the presence of spin accumulation, are characterized by different electrochemical potentials for electrons of opposite spin polarizations. At temperatures less than (vc: charge velocity in the wire) and under the assumption that the Hubbard gap 2M is large enough, M > TL, we calculate the average currents (charge and spin) and their zero-frequency correlators. The average spin (charge) current depends only on the difference (sum) of the spin-dependent voltages
and even a weak electron backscattering of low rate
leads to the spin current suppression at
smaller than
. The spin current recovers its free mode behavior at spin voltage or temperature larger than Γ. Suppression of the spin-charge correlator suggesting the appearance of spin-charge separation needs both
to be larger than Γ. In the absence of the average charge current at
its shot noise is proportional to the average spin backscattered current defined by Vs and can be used to measure the spin accumulation in the reservoirs. The relation of these results to Kondo dot transport in the Toulouse limit is also clarified.
PACS: 71.10.Pm – Fermions in reduced dimensions (anyons, composite fermions, Luttinger liquid, etc.) / 72.25.Mk – Spin transport through interfaces / 73.40.Rw – Metal-insulator-metal structures
© EPLA, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.