Issue |
EPL
Volume 105, Number 4, February 2014
|
|
---|---|---|
Article Number | 40004 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/105/40004 | |
Published online | 05 March 2014 |
Emergent statistical-mechanical structure in the dynamics along the period-doubling route to chaos
1 Instituto de Física, Universidad Nacional Autónoma de México - Apartado Postal 20-364, México 01000 D.F., Mexico
2 Centro de Ciencias de la Complejidad, Universidad Nacional Autónoma de México - Apartado Postal 20-364, México 01000 D.F., Mexico
Received: 14 November 2013
Accepted: 11 February 2014
We consider both the dynamics within and towards the supercycle attractors along the period-doubling route to chaos to analyze the development of a statistical-mechanical structure. In this structure the partition function consists of the sum of the attractor position distances known as supercycle diameters and the associated thermodynamic potential measures the rate of approach of trajectories to the attractor. The configurational weights for finite 2N, and infinite , periods can be expressed as power laws or deformed exponentials. For a finite period the structure is undeveloped in the sense that there is no true configurational degeneracy, but in the limit this is realized together with the analog property of a Legendre transform linking entropies of two ensembles. We also study the partition functions for all N and the action of the central limit theorem via a binomial approximation.
PACS: 05.45.Ac – Low-dimensional chaos / 05.20.Gg – Classical ensemble theory / 05.45.Df – Fractals
© EPLA, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.