Issue |
EPL
Volume 106, Number 2, April 2014
|
|
---|---|---|
Article Number | 28001 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/106/28001 | |
Published online | 18 April 2014 |
Jamming transition in a driven lattice gas
Department of Physics, University of Pune - Ganeshkhind, Pune 411007, India
Received: 10 February 2014
Accepted: 1 April 2014
We study a two-lane driven lattice gas model with oppositely directed species of particles moving on two periodic lanes with correlated lane switching processes. While the overall density of individual species of particles is conserved in this system, the particles are allowed to switch lanes with finite probability only when oppositely directed species meet on the same lane. This system exhibits a unique behavior, wherein phase transition is observed between a homogeneous absorbing phase, characterized by complete segregation of oppositely directed particles between the two lanes, and a jammed phase. The transition is accompanied by a finite drop of current in the lattice, emergence of a cluster comprised of both species of particles in the jammed phase, and is determined by the interplay of the relative rates of translation of particles on the same lane and their lane switching rates. These findings may have interesting implications for understanding the phenomenon of jamming in microtubule filaments observed in the context of axonal transport.
PACS: 87.16.A- – Theory, modeling, and simulations / 64.60.-i – General studies of phase transitions / 87.16.Wd – Intracellular trafficking
© EPLA, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.