Issue |
EPL
Volume 106, Number 3, May 2014
|
|
---|---|---|
Article Number | 30004 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/106/30004 | |
Published online | 16 May 2014 |
Ångström-scale chemically powered motors
Chemical Physics Theory Group, Department of Chemistry, University of Toronto Toronto, Ontario M5S 3H6, Canada
Received: 13 February 2014
Accepted: 24 April 2014
Like their larger micron-scale counterparts, Ångström-scale chemically self-propelled motors use asymmetric catalytic activity to produce self-generated concentration gradients that lead to directed motion. Unlike their micron-scale counterparts, the sizes of Ångström-scale motors are comparable to the solvent molecules in which they move, they are dominated by fluctuations, and they operate on very different time scales. These new features are studied using molecular dynamics simulations of small sphere dimer motors. We show that the ballistic regime is dominated by the thermal speed but the diffusion coefficients of these motors are orders of magnitude larger than inactive dimers. Such small motors may find applications in nano-confined systems or perhaps eventually in the cell.
PACS: 05.60.Cd – Classical transport / 02.70.Ns – Molecular dynamics and particle methods / 61.20.Ja – Computer simulation of liquid structure
© EPLA, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.