Issue |
EPL
Volume 107, Number 2, July 2014
|
|
---|---|---|
Article Number | 20004 | |
Number of page(s) | 5 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/107/20004 | |
Published online | 11 July 2014 |
The local approach to quantum transport may violate the second law of thermodynamics
Institute of Chemistry, The Hebrew University of Jerusalem - Jerusalem 91904, Israel
Received: 4 May 2014
Accepted: 23 June 2014
Clausius statement of the second law of thermodynamics reads: Heat will flow spontaneously from a hot to cold reservoir. This statement should hold for transport of energy through a quantum network composed of small subsystems each coupled to a heat reservoir. When the coupling between nodes is small, it seems reasonable to construct a local master equation for each node in contact with the local reservoir. The energy transport through the network is evaluated by calculating the energy flux after the individual nodes are coupled. We show by analyzing the most simple network composed of two quantum nodes coupled to a hot and cold reservoir, that the local description can result in heat flowing from cold to hot reservoirs, even in the limit of vanishing coupling between the nodes. A global derivation of the master equation which prediagonalizes the total network Hamiltonian and within this framework derives the master equation, is always consistent with the second law of thermodynamics.
PACS: 03.65.Yz – Decoherence; open systems; quantum statistical methods / 05.60.Gg – Quantum transport
© EPLA, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.