Issue |
EPL
Volume 109, Number 1, January 2015
|
|
---|---|---|
Article Number | 14002 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/109/14002 | |
Published online | 15 January 2015 |
Turbulent convective heat transfer in a long cylinder with liquid sodium
1 Institute of Continuous Media Mechanics - Korolyov 1, Perm, 614013, Russia
2 JSC Afrikantov OKBM - Burnakovsky 15, Nizhny Novgorod, 603074, Russia
Received: 5 September 2014
Accepted: 13 December 2014
Turbulent convective heat transfer in a closed cylinder with aspect ratio L = 5D (D is the diameter and L is the cylinder length) filled with liquid sodium, heated at one end face and cooled at the other, is studied experimentally for three different positions: vertical, inclined at 45 degrees to the vertical and horizontal. The Rayleigh number, which is determined by the superimposed temperature difference and the cylinder diameter, varies within the range . It is shown that the convective heat transfer along the cylinder is most effective in the inclined cylinder, where an intense large-scale circulation exists on a background of developed small-scale turbulence. In the horizontal cylinder, the turbulence is weak, but the large-scale circulation provides moderate heat transfer. In the vertical cylinder, the large-scale circulation is absent, the turbulent fluctuations are most active, but the heat transfer is the weakest. The dependence of the Nusselt number on the Rayleigh and the Prandtl numbers, and the dependence of the Reynolds number on the Grashof number are shown and discussed.
PACS: 47.27.-i – Turbulent flows / 47.27.te – Turbulent convective heat transfer
© EPLA, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.