Issue |
EPL
Volume 110, Number 6, June 2015
|
|
---|---|---|
Article Number | 60003 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/110/60003 | |
Published online | 07 July 2015 |
Mean-field-diffusion–induced chimera death state
Department of Physics, University of Burdwan - Burdwan 713 104, West Bengal, India
(a) tbanerjee@phys.buruniv.ac.in
Received: 21 April 2015
Accepted: 12 June 2015
Recently a novel dynamical state, called the chimera death, has been discovered in a network of nonlocally coupled identical oscillators (Zakharova A., Kapeller M. and Schöll E., Phys. Rev. Lett., 112 (2014) 154101), which is defined as the coexistence of spatially coherent and incoherent oscillation death state. This state arises due to the interplay of nonlocality and symmetry breaking and thus it bridges the gap between two important dynamical states, namely the chimera and oscillation death. In this paper we show that the chimera death can be induced in a network of generic identical oscillators with mean-field diffusive coupling and thus we establish that a nonlocal coupling is not essential to obtain chimera death. We identify a new transition route to the chimera death state, namely the transition from in-phase synchronized oscillation to chimera death via global amplitude death state. We ascribe the occurrence of chimera death to the bifurcation structure of the network in the limiting condition and show that multi-cluster chimera death states can be achieved by a proper choice of initial conditions.
PACS: 05.45.Xt – Synchronization; coupled oscillators / 89.75.Kd – Patterns
© EPLA, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.