Issue |
EPL
Volume 111, Number 1, July 2015
|
|
---|---|---|
Article Number | 18003 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/111/18003 | |
Published online | 27 July 2015 |
Superconducting properties of lithium-decorated bilayer graphene
Qatar Environment and Energy Research Institute, Qatar Foundation - PO Box 5825, Doha, Qatar
Received: 23 March 2015
Accepted: 26 June 2015
The present study provides a comprehensive theoretical analysis of the superconducting phase in selected lithium-decorated bilayer graphene nanostructures. The numerical calculations, conducted within the Eliashberg formalism, give quantitative estimations of the most important thermodynamic properties such as the critical temperature, specific heat, critical field and others. It is shown that discussed lithium-graphene systems present enhancement of their thermodynamic properties comparing to the monolayer case, e.g., the critical temperature can be raised to . Furthermore, estimated characteristic thermodynamic ratios exceed predictions of the Bardeen-Cooper-Schrieffer theory suggesting that the considered lithium-graphene systems can be properly analyzed only within the strong-coupling regime.
PACS: 81.05.ue – Graphene / 74.25.Bt – Thermodynamic properties / 74.20.Fg – BCS theory and its development
© EPLA, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.