Issue |
EPL
Volume 111, Number 2, July 2015
|
|
---|---|---|
Article Number | 24006 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/111/24006 | |
Published online | 18 August 2015 |
Dynamics of a charged drop in a quadrupole electric field
Department of Chemical Engineering, Indian Institute of Technology Bombay - Mumbai, India 400076
Received: 15 January 2015
Accepted: 22 July 2015
Quadrupole electric fields are commonly employed for confining charged conducting drops in Paul traps for studying Rayleigh instability characteristics. We investigate the effect of these fields on the deformation and stability characteristics of a charged liquid drop, using the axisymmetric boundary integral method (BIM). Different combinations of the amount of charge and strength of the electric field give rise to different equilibrium shapes. Interestingly, unlike in the case of uniform fields, stable oblate equilibrium drop shapes are sustained in quadrupole fields. In a positive endcap configuration of the quadrupole setup a drop carrying a small negative charge displays a transition from oblate to prolate as the field strength increases. On the other hand, for the case of a highly charged drop, a shift in the Rayleigh critical charge is observed in the presence of a weak quadrupole field. The Rayleigh instability displays imperfect transcritical bifurcation characteristics with respect to imposed prolate and oblate perturbations. Results are of significance in i) interpreting deformation and the Rayleigh stability effects using Paul traps with quadrupole fields, ii) designing more efficient quadrupole-field–based technologies for emulsification of water in oil.
PACS: 47.20.Ma – Interfacial instabilities (e.g., Rayleigh-Taylor) / 47.65.-d – Magnetohydrodynamics and electrohydrodynamics / 47.11.Hj – Boundary element methods
© EPLA, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.