Issue |
EPL
Volume 111, Number 4, August 2015
|
|
---|---|---|
Article Number | 47004 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/111/47004 | |
Published online | 04 September 2015 |
Multiferroic property of colloidal crystals with three-dimensional solid-solid phase transitions
Department of Physics, State Key Laboratory of Surface Physics, and Collaborative Innovation Center of Advanced Microstructures, Fudan University - Shanghai 200433, China
Received: 29 April 2015
Accepted: 10 August 2015
It is a challenge to understand the dynamics of ubiquitous solid-solid phase transitions in three dimensions. In this direction, colloidal crystals are often adopted as a model system for investigation, because they contain highly ordered arrays of colloidal microparticles, analogous to atomic or molecular counterparts with appropriate scaling. Here, by resorting to the Ewald-Kornfeld formulation, we describe a type of solid-solid phase transitions from the body-centered tetragonal lattice, to the face-centered cubic lattice, and then to subsequent lattices, which have been experimentally demonstrated in electro-magnetorheological fluids (which contain suspended microparticles enabling the formation of crystalline structures) subjected to crossed electric and magnetic fields. As a result, we find that each lattice exhibits specific multiferroic properties at room temperature. The findings are further confirmed by independent finite-element simulations. Despite some limitations (e.g., the specific value of change in magnetization is small during phase transitions), this work suggests a way to real-time measure the microscopic dynamics of three-dimensional solid-solid phase transitions in colloidal crystals by detecting their multiferroic properties.
PACS: 75.85.+t – Magnetoelectric effects, multiferroics / 64.70.kj – Glasses / 47.57.J- – Colloidal systems
© EPLA, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.