Issue |
EPL
Volume 112, Number 5, December 2015
|
|
---|---|---|
Article Number | 50001 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/112/50001 | |
Published online | 18 December 2015 |
Estimating the principal components of correlation matrices from all their empirical eigenvectors
1 Laboratoire de Physique Théorique de l'Ecole Normale Supérieure, associé au CNRS et à l'Université Pierre et Marie Curie - 24 rue Lhomond, 75005 Paris, France
2 Institut de Physique Théorique Philippe Meyer - 24 rue Lhomond, 75005 Paris, France
Received: 8 September 2015
Accepted: 24 November 2015
We consider the problem of estimating the principal components of a population covariance matrix from a limited number of measurement data. Using a combination of random matrix and information-theoretic tools, we show that all the eigenmodes of the sample correlation matrices are informative, and not only the top ones. We show how this information can be exploited when prior information about the principal component, such as whether it is localized or not, is available by mapping the estimation problem onto the search for the ground state of a spin-glass–like effective Hamiltonian encoding the prior. Results are illustrated numerically on the spiked covariance model.
PACS: 02.50.Sk – Multivariate analysis / 02.50.Tt – Inference methods / 05.10.Ln – Monte Carlo methods
© EPLA, 2015
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.