Issue |
EPL
Volume 113, Number 5, March 2016
|
|
---|---|---|
Article Number | 57008 | |
Number of page(s) | 6 | |
Section | Condensed Matter: Electronic Structure, Electrical, Magnetic and Optical Properties | |
DOI | https://doi.org/10.1209/0295-5075/113/57008 | |
Published online | 01 April 2016 |
Inverse spin Hall effect in a HgTe quantum well
1 National Laboratory of Solid State Microstructures and Department of Physics, Nanjing University Nanjing 210093, China
2 Collaborative Innovation Center of Advanced Microstructures, Nanjing University - Nanjing 210093, China
Received: 22 December 2015
Accepted: 23 March 2016
The inverse spin Hall effect (ISHE) is a phenomenon due to spin-orbit coupling, in which a longitudinal spin current can generate a transverse charge current and electrical voltage difference. We investigate the ISHE in a topological insulator material, a HgTe quantum well, assuming that the Fermi energy is in the conduction band. The transverse charge current and voltage difference are calculated in the ballistic regime. It is found that in this system a Rashba spin-orbit coupling can cause the occurrence of the ISHE. The induced transverse voltage difference is maximized when the spin current is polarized in the longitudinal direction, and vanishes when the spin current is polarized in the transverse directions.
PACS: 72.25.-b – Spin polarized transport / 73.23.-b – Electronic transport in mesoscopic systems / 75.76.+j – Spin transport effects
© EPLA, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.