Issue |
EPL
Volume 114, Number 1, April 2016
|
|
---|---|---|
Article Number | 14004 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/114/14004 | |
Published online | 03 May 2016 |
An equation of state for granular media at the limit state of isotropic compression
1 Department of Industrial Engineering, Faculty of Engineering, Universidad de la Sabana Km 7 Autopista Norte de Bogota, Chía, Colombia
2 Simulation of Physical Systems Group, CEiBA-Complejidad, Department of Physics, Universidad Nacional de Colombia - Carrera 30 No. 45-03, Ed. 404, Of. 348, Bogota D.C., Colombia
3 LMGC, UMR5508, CNRS-University of Montpellier - 163 rue Auguste Broussonnet, 34090 Montpellier, France
4 〈MSE〉 2, MITei, Massachusetts Institute of Technology - 77 Massachusetts Avenue, Cambridge, MA 02139, USA
Received: 12 January 2016
Accepted: 20 April 2016
It is well believed that the volumetric entropy of Edwards captures part of the physics of granular media, but it is still unclear whether it can be applied to granular systems under mechanical stress. By working out a recent proposal by Aste, Di Matteo et al. to measure Edwards' compactivity from the volume distribution of Voronoï or Delaunay tessellations (Phys. Rev. E, 77 (2008) 021309), and assuming that the total volume divides into elementary cells of fixed minimal volume, we derive an equation of state relating the compactivity to the packing fraction, and we show by extensive molecular-dynamics simulations that this equation and its underlying assumption describe well the volumetric aspects of both the limit state of isotropic compression and the limit state of shear (also called critical state in soil mechanics) for three-dimensional ensembles of mono-disperse spheres, for a broad range of the sliding and rolling friction coefficients. In addition, by using the limit state of isotropic compression as testing ground, we find that the compactivity, the entropy per elementary cell and the number of elementary cells per grain computed by this method are the same within statistical precision, either by using Voronoï, Delaunay, or centroidal Voronoï tessellations, allowing thus for an objective definition. This means that not only Aste's cell method is robust and suitable to measure Edwards' compactivity of granular systems under mechanical stress but also the actual nature of the elementary cells might be unimportant.
PACS: 45.70.-n – Granular systems / 83.80.Fg – Granular solids / 81.05.Rm – Porous materials; granular materials
© EPLA, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.