Issue |
EPL
Volume 115, Number 2, July 2016
|
|
---|---|---|
Article Number | 29001 | |
Number of page(s) | 6 | |
Section | Geophysics, Astronomy and Astrophysics | |
DOI | https://doi.org/10.1209/0295-5075/115/29001 | |
Published online | 30 August 2016 |
Modified gravito-electrostatic sheath in the presence of turbu-magnetic pressure effects
Department of Physics, Tezpur University - Napaam-784028, Tezpur, Assam, India
Received: 14 June 2016
Accepted: 5 August 2016
The gravito-electrostatic sheath (GES) model, previously formulated to investigate the equilibrium properties of the Sun and its unbounded atmosphere coupled via the interfacial solar surface boundary (SSB) under the gravito-electrostatic interplay, is re-examined. It is modified, for the first time, with the self-consistent inclusion of turbu-magnetic pressure effects originating from intrinsic continuous instability processes. The role of the new effects is interestingly realized through considerable changes in the dynamic properties of the solar plasma system on both the bounded and unbounded scales. The SSB, as a result of the outward turbu-magnetic action relative to the inward self-gravitating one, is found to shift radially outwards by 5.71% relative to the sheer GES model, and by 7.50% inwards relative to the pure uniformly magnetized counterpart. The sonic point moves inwards by 30% in the former, and by 24% in the latter; respectively. It is further found that the floating surface and floating potential increase by 47% each relative to the GES; and by 27% and 160% relative to the pure magnetic case; respectively. The implications and applications are discussed in the panoptical light of real astronomical observations alongside the facts, faults and future refinements.
PACS: 95.30.Qd – Magnetohydrodynamics and plasmas / 96.60.Hv – Electric and magnetic fields, solar magnetism / 96.60.-j – Solar physics
© EPLA, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.