Issue |
EPL
Volume 115, Number 3, August 2016
|
|
---|---|---|
Article Number | 34003 | |
Number of page(s) | 5 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/115/34003 | |
Published online | 12 September 2016 |
Effects of compressibility on turbulent relative particle dispersion
Kavli Institute of Theoretical Physics, University of California - Santa Barbara, CA 93106, USA
Received: 17 May 2016
Accepted: 16 August 2016
In this paper, phenomenological developments are used to explore the effects of compressibility on the relative particle dispersion (RPD) in three-dimensional (3D) fully developed turbulence (FDT). The role played by the compressible FDT cascade physics underlying this process is investigated. Compressibility effects are found to lead to reduction of RPD, development of the ballistic regime and particle clustering, corroborating the laboratory experiment and numerical simulation results (Cressman J. R. et al., New J. Phys., 6 (2004) 53) on the motion of Lagrangian tracers on a surface flow that constitutes a 2D compressible subsystem. These formulations are developed from the scaling relations for compressible FDT and are validated further via an alternative dimensional/scaling development for compressible FDT similar to the one given for incompressible FDT by Batchelor and Townsend (Surveys in Mechanics (Cambridge University Press) 1956, p. 352). The rationale for spatial intermittency effects is legitimized via the nonlinear scaling dependence of RPD on the kinetic-energy dissipation rate.
PACS: 47.40.-x – Compressible flows; shock waves
© EPLA, 2016
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.