Issue |
EPL
Volume 118, Number 4, May 2017
|
|
---|---|---|
Article Number | 40002 | |
Number of page(s) | 7 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/118/40002 | |
Published online | 20 July 2017 |
Amplitude death and resurgence of oscillation in networks of mobile oscillators
Physics and Applied Mathematics Unit, Indian Statistical Institute - Kolkata 700108, India
Received: 19 May 2017
Accepted: 28 June 2017
The phenomenon of amplitude death has been explored using a variety of different coupling strategies in the last two decades. In most of the works, the basic coupling arrangement is considered to be static over time, although many realistic systems exhibit significant changes in the interaction pattern as time varies. In this article, we study the emergence of amplitude death in a dynamical network composed of time-varying interaction amidst a collection of random walkers in a finite region of three-dimensional space. We consider an oscillator for each walker and demonstrate that depending upon the network parameters and hence the interaction between them, the global oscillation in the network gets suppressed. In this framework, the vision range of each oscillator decides the number of oscillators with which it interacts. In addition, with the use of an appropriate feedback parameter in the coupling strategy, we articulate how the suppressed oscillation can be resurrected in the systems' parameter space. The phenomenon of amplitude death and the resurgence of oscillation is investigated taking limit cycle and chaotic oscillators for broad ranges of the parameters, like the interaction strength k between the entities, the vision range r and the speed of movement v.
PACS: 05.45.Xt – Synchronization; coupled oscillators / 89.75.-k – Complex systems / 05.45.Pq – Numerical simulations of chaotic systems
© EPLA, 2017
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.