Issue |
EPL
Volume 121, Number 4, February 2018
|
|
---|---|---|
Article Number | 44001 | |
Number of page(s) | 7 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/121/44001 | |
Published online | 16 April 2018 |
The nature of interfacial instabilities in liquid metal batteries in a vertical magnetic field
Institute of Thermodynamics and Fluid Mechanics, Technische Universität Ilmenau - 98684 Ilmenau, Germany
Received: 20 December 2017
Accepted: 26 March 2018
The nature of instabilities in liquid metal batteries in the presence of a vertical magnetic field has been studied. The battery consists of two liquid metal layers, connected to the collectors, and a layer with an electrolyte inbetween. The closed geometry in the horizontal plane has been replaced by a half-plane to get a better insight into the problem. As in aluminium reduction cells the instability is generated at the electrically insulating sidewall of the battery. A travelling-wave solution has been obtained, which shows that there are two modes of the instability, fast and slow. Either of these modes may be most unstable depending on the values of various parameters, the most important of which are the well-known parameter of the instability, β, and the density of the electrolyte. For the intermediate range of the electrolyte density the medium-size batteries may be expected to be stable.
PACS: 47.35.-i – Hydrodynamic waves / 47.65.-d – Magnetohydrodynamics and electrohydrodynamics
© EPLA, 2018
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.