Issue |
EPL
Volume 130, Number 2, April 2020
|
|
---|---|---|
Article Number | 29002 | |
Number of page(s) | 7 | |
Section | Geophysics, Astronomy and Astrophysics | |
DOI | https://doi.org/10.1209/0295-5075/130/29002 | |
Published online | 01 June 2020 |
Dark energy from Higgs potential
Department of Physics, Technical University of Denmark - Fysikvej bld. 307, DK-2800 Kongens Lyngby, Denmark, EU
Received: 22 August 2019
Accepted: 7 May 2020
We derive the ratio of dark energy to baryon matter content in the universe from a Higgs potential matching a description of baryon matter on an intrinsic configuration space. The match determines the Higgs mass and self-coupling parameters and introduces a constant term in the Higgs potential. The constant term is taken to give dark energy contributions from detained neutrons, both primordial and piled-up neutrons from nuclear processes in stars. This corresponds to the dark energy content increasing with time. The two contributions possibly give rise to the primordial inflation and the later accelerated recession, respectively. The ensuing inflation during nucleosynthesis may explain the primordial lithium-seven deficit relative to the standard Big Bang nucleosynthesis model predictions. From the observed helium and stellar metallicity contents, we get a dark energy to baryon matter ratio of 14.5(0.7) to compare with the observed value of 13.9(0.2).
PACS: 98.80.Cq – Particle-theory and field-theory models of the early Universe (including cosmic pancakes, cosmic strings, chaotic phenomena, inflationary universe, etc.)
© EPLA, 2020
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.