Issue |
EPL
Volume 134, Number 6, June 2021
|
|
---|---|---|
Article Number | 68003 | |
Number of page(s) | 7 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/134/68003 | |
Published online | 17 August 2021 |
Quantification of in-plane flexoelectricity in lipid bilayers
Department of Mechanical Engineering, University of Houston - Houston, TX, 77204, USA
(a) ashutosh@uh.edu (corresponding author)
Received: 1 February 2021
Accepted: 17 May 2021
Lipid bilayers behave as 2D dielectric materials that undergo polarization and deformation in the presence of an electric field. This effect has been previously modeled by continuum theories which assume a polarization field oriented normal to the membrane surface. However, the molecular architecture of the lipids reveals that the headgroup dipoles are primarily oriented tangential to the membrane surface. Here, we perform atomistic and coarse-grained molecular dynamics simulations to quantify the in-plane polarization undergone by a flat bilayer and a spherical vesicle in the presence of an applied electric field. We use these predictions to compute an effective in-plane flexoelectric coefficient for four different lipid types. Our findings provide the first molecular proof of the in-plane polarization undergone by lipid bilayers and furnish the material parameter required to quantify membrane-electric field interactions.
© 2021 EPLA
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.