Issue |
EPL
Volume 135, Number 6, September 2021
|
|
---|---|---|
Article Number | 64002 | |
Number of page(s) | 5 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/135/64002 | |
Published online | 17 November 2021 |
Influence of 3D printing stress wave on residual stress
1 School of Mechanical Engineering, Shandong University - Jinan, 250061, PRC
2 Key Laboratory of High Efficiency and Clean Mechanical Manufacture, Ministry of Education, Shandong University Shandong, PRC
(a) jiangzhaoliang@sdu.edu.cn (corresponding author)
Received: 30 January 2021
Accepted: 4 June 2021
As a popular rapid manufacturing technology, three-dimensional printing (3D printing) has been widely adopted in medical, automotive, aerospace, construction and other industrial fields. The stereo lithography apparatus (SLA) is an effective 3D printing method for ceramic printing. However, shrinkage from monomer to polymer and laser stress wave cause residual stress in the formed parts during SLA. Serious quality defects including cracks, warpage and deformation caused by residual stress have remained to be a problem. Basically, the laser stress wave plays an important role in the generation of 3D printing residual stress. In this work, to investigate the propagation mechanism of the laser stress wave, the finite element method was adopted to simulate the SLA process of zirconia. The influence of 3D printing factors on the residual stress was obtained, and we found that the wave velocity of the stress wave obtained by the simulation model was highly consistent with the theoretical wave velocity. Meanwhile, the attenuation formula of the stress wave in the 3D printing process was obtained by fitting to investigate its attenuation law. Based on the above results, the attenuation law of the 3D printing stress wave has a direct influence on the development and variation trend of its residual stress.
© 2021 EPLA
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.