Issue |
EPL
Volume 136, Number 5, December 2021
|
|
---|---|---|
Article Number | 51003 | |
Number of page(s) | 7 | |
Section | The Physics of Elementary Particles and Fields | |
DOI | https://doi.org/10.1209/0295-5075/ac56ab | |
Published online | 17 March 2022 |
On gravity and quantum interactions
Department of Physics, Technical University of Denmark - Fysikvej bld 307, DK 2800 Kongens Lyngby, Denmark
(a) ole.trinhammer@fysik.dtu.dk (corresponding author)
Received: 30 October 2021
Accepted: 18 February 2022
We introduce the metric of general relativity into a description of baryon mass spectra which otherwise has been founded entirely on the concept of an intrinsic configuration space, the Lie group U(3). We find that the general relativistic metric influences the mass eigenstates in gravitational fields. We discuss parts per million effects that may be observed in space missions close to the Sun or the planet Jupiter, for instance by accurate Cavendish experiments or energy shifts in gamma decays of metastable nuclei like Ba-137m. We review how the particle and gauge fields are generated by momentum forms on the intrinsic wave functions to form the quantum field bases for instance of quantum chromodynamics. Our strategy to combine quantum interactions and general relativity is that of geometrising quantum mechanics rather than quantising gravity.
© 2022 The author(s)
Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License (CC-BY). Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.