Issue |
EPL
Volume 141, Number 5, March 2023
|
|
---|---|---|
Article Number | 54002 | |
Number of page(s) | 7 | |
Section | Nuclear and plasma physics, particles and fields | |
DOI | https://doi.org/10.1209/0295-5075/acbb20 | |
Published online | 22 February 2023 |
Cooling flow regime of a plasma thermal quench
1 Theoretical Division, Los Alamos National Laboratory - Los Alamos, NM 87545, USA
2 School of Nuclear Science and Technology, University of Science and Technology of China - Hefei, Anhui, China
(a) E-mail: yzengzhang@lanl.gov (corresponding author)
Received: 22 November 2022
Accepted: 10 February 2023
A large class of Laboratory, Space, and Astrophysical plasmas is nearly collisionless. When a localized energy or particle sink, for example, in the form of a radiative cooling spot or a black hole, is introduced into such a plasma, it can trigger a plasma thermal collapse, also known as a thermal quench in tokamak fusion. Here we show that the electron thermal conduction in such a nearly collisionless plasma follows the convective energy transport scaling in itself or in its spatial gradient, due to the constraint of ambipolar transport. As a result, a robust cooling flow aggregates mass toward the cooling spot and the thermal collapse of the surrounding plasma takes the form of four propagating fronts that originate from the radiative cooling spot, along the magnetic field line in a magnetized plasma. The slowest one, which is responsible for deep cooling, is a shock front.
© 2023 The author(s)
Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License (CC-BY). Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.