Issue |
EPL
Volume 145, Number 4, February 2024
|
|
---|---|---|
Article Number | 47001 | |
Number of page(s) | 7 | |
Section | Biological and soft matter physics | |
DOI | https://doi.org/10.1209/0295-5075/ad2d13 | |
Published online | 14 March 2024 |
Interfacial instabilities in confined displacements involving non-Newtonian fluids
Raman Research Institute - C. V. Raman Avenue, Sadashivanagar, Bangalore 560 080, India
Received: 16 November 2023
Accepted: 26 February 2024
The growth of interfacial instabilities during fluid displacements can be driven by gradients in pressure, viscosity and surface tension, and by applying external fields. Since displacements of non-Newtonian fluids such as polymer solutions, colloidal and granular slurries are ubiquitous in natural and industrial processes, understanding the growth mechanisms and fully developed morphologies of interfacial patterns involving non-Newtonian fluids is extremely important. In this perspective, we focus on displacement experiments, wherein competitions between capillary, viscous, elastic and frictional forces drive the onset and growth of primarily viscous fingering instabilities in confined geometries. We conclude by highlighting several exciting open problems in this research area.
© 2024 EPLA
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.