Issue |
EPL
Volume 146, Number 1, April 2024
|
|
---|---|---|
Article Number | 14001 | |
Number of page(s) | 7 | |
Section | Nuclear and plasma physics, particles and fields | |
DOI | https://doi.org/10.1209/0295-5075/ad2d86 | |
Published online | 28 March 2024 |
Relativistic energy density functional from momentum space to coordinate space within a coherent density fluctuation model
1 Department of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala, Punjab 147004, India
2 Center for Theoretical and Computational Physics, Department of Physics, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
Received: 21 July 2023
Accepted: 27 February 2024
In this theoretical study, we have derived a simplified analytical expression for the binding energy per nucleon as a function of density and isospin asymmetry within the relativistic mean-field model. We have generated a new parameterization for the density-dependent DD-ME2 parameter set using the Relativistic-Hartree-Bogoliubov approach. Moreover, this work attempts to revisit the prior polynomial fitting in Kumar A. et al. Phys. Rev. C, 103 (2021) 024305 for the non-linear NL3 force parameter to provide a simplified set of equations for the energy density functional which is used for calculating the surface properties of finite nuclei. The current study improves the existing fitting procedure by effectively proposing a simpler model that provides comparably precise results while lowering the computational expense. To study the surface properties of finite nuclei with these parameterizations, we have adopted the coherent density fluctuation model, which effectively translates the quantities of nuclear matter from momentum space to coordinate space at local density. The isospin properties, such as symmetry energy and its surface and volume components, slope parameter, finite nuclear incompressibility, and surface incompressibility for even-even nuclei, are calculated for different mass regions. Moreover, we have studied the effect of density, weight function, and choice of relativistic force parameters on the surface properties. The significance of this work will help to determine the properties of nuclei along the nuclear landscape and can facilitate an improved understanding of the island of stability, heavy-ion collision, and nucleosynthesis, among others.
© 2024 The author(s)
Published by the EPLA under the terms of the Creative Commons Attribution 4.0 International License (CC-BY). Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.