Issue |
EPL
Volume 146, Number 2, April 2024
|
|
---|---|---|
Article Number | 25001 | |
Number of page(s) | 7 | |
Section | Atomic, molecular and optical physics | |
DOI | https://doi.org/10.1209/0295-5075/ad31fd | |
Published online | 11 April 2024 |
One-for-all: Support-free optimized Fourier random phase for real-time multiple kinoforms generation
1 Key Laboratory of Intelligent Computing and Signal Processing, Ministry of Education, Anhui University Hefei, Anhui Province 230601, China
2 Department of Electronic Engineering, Tsinghua University - Beijing 100084, China
3 Department of Mathematics, Hefei Normal University - Hefei, Anhui Province 230069, China
Received: 5 December 2023
Accepted: 8 March 2024
Existing optimized random phase (ORAP) approach mainly faces the limitations of fixed supports. Different ORAPs need to be generated for different target images with different support sizes, thus lacking flexibility and severely limiting applicability. This paper proposes a support-free optimized Fourier random phase (SF-OFRAP) approach for non-iterative kinoform generation, which greatly improves the speed and flexibility of generating kinoforms, and can achieve comparable performance to the ORAP approach. The proposed SF-OFRAP approach not only breaks the fixed support constraint of a target image, but can generate kinoforms of target images with different shapes, different positions, etc. with arbitrary supports. Our proposed SF-OFRAP approach can achieve real-time generation of kinoforms for multi-view holographic display using only a single generated SF-OFRAP without the need for additional phase compensation. The SF-OFRAP approach is suitable for real-time holographic display. Experiments verified the superiority of the produced SF-OFRAP over the ORAP method in terms of flexibility and adaptability to multiple different objects in different positions and different shapes using only one kind of these. The experimental results verify the effectiveness and excellent flexibility of SF-OFRAP for video holographic display and multi-view holographic display.
© 2024 EPLA
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.