Volume 82, Number 1, April 2008
Article Number 10003
Number of page(s) 6
Section General
Published online 11 March 2008
EPL, 82 (2008) 10003
DOI: 10.1209/0295-5075/82/10003

Fractal structures in the Hénon-Heiles Hamiltonian

R. Barrio1, 2, F. Blesa1, 3 and S. Serrano1

1  GME, Universidad de Zaragoza - E-50009 Zaragoza, Spain, EU
2  Departamento Matemática Aplicada and IUMA, Universidad de Zaragoza - E-50009 Zaragoza, Spain, EU
3  Departamento Física Aplicada, Universidad de Zaragoza - E-50009 Zaragoza, Spain, EU

received 8 November 2007; accepted in final form 12 February 2008; published April 2008
published online 11 March 2008

During the past few years, several papers (AGUIRRE J., VALLEJO J. C. and SANJUÁN M. A. F., Phys. Rev. E, 64 (2001) 066208; DE MOURA A. P. S. and LETELIER P. S., Phys. Lett. A, 256 (1999) 362; SEOANE J. M., SANJUÁN M. A. F. and LAI Y.-C., Phys. Rev. E, 76 (2007) 061208) have detected the presence of fractal escape basins in Hénon-Heiles potentials in the unbounded range. Upon fixing the energy value, these basins are detected on the (x, y) and $(y,\dot{y}) $ planes. In this paper, we explore the appearance of different kinds of fractal structures. We present an analysis of the fractal structures on the escape basins of the (x, y) and (y, E) planes (allowing the energy value E to change and studying the fat-fractal exponent); later, we present these structures on the KAM tori for low energy values, on small regular islands inside the chaotic sea close to the critical energy level on the (y, E)-plane, and most interestingly, on small regular regions inside the escape region. These small regions of bounded motion and regular behavior appear after the critical escape energy, when most of the orbits are escape orbits.

05.45.-a - Nonlinear dynamics and chaos.
05.45.Df - Fractals.
05.45.Pq - Numerical simulations of chaotic systems.

© EPLA 2008