Issue |
EPL
Volume 106, Number 3, May 2014
|
|
---|---|---|
Article Number | 34002 | |
Number of page(s) | 6 | |
Section | Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics | |
DOI | https://doi.org/10.1209/0295-5075/106/34002 | |
Published online | 08 May 2014 |
Strange eigenmodes and chaotic advection in open fluid flows
Institute of Complex Systems and Mathematical Biology, University of Aberdeen - Aberdeen, AB24 3UE, UK
Received: 4 March 2014
Accepted: 12 April 2014
We study the dynamics of mixing of advected fields in open chaotic flows. We propose the eigenfunctions of the stroboscopic advection-diffusion (SAD) operator as the natural generalisations of the concept of strange eigenmodes for open flows, and argue that its eigenvalues determine the long-time dynamics of mixing. We characterise their dependence on diffusivity and on the properties of the chaotic advection. In particular, we find that the SAD eigenvalues are determined by the dynamical invariants of the chaotic saddle, and that the eigenmodes mirror its fractal geometry. Furthermore, we find that the dependence of the SAD eigenvalues on the diffusivity is strikingly different for hyperbolic and non-hyperbolic flows. In the latter case, we show strong evidence of an anomalous scaling of the eigenvalues with the diffusivity.
PACS: 47.52.+j – Chaos in fluid dynamics / 47.53.+n – Fractals in fluid dynamics / 05.45.Ac – Low-dimensional chaos
© EPLA, 2014
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.