Issue
EPL
Volume 82, Number 4, May 2008
Article Number 44002
Number of page(s) 6
Section Electromagnetism, Optics, Acoustics, Heat Transfer, Classical Mechanics, and Fluid Dynamics
DOI http://dx.doi.org/10.1209/0295-5075/82/44002
Published online 14 May 2008
EPL, 82 (2008) 44002
DOI: 10.1209/0295-5075/82/44002

Discrete effects on thermal boundary conditions for the thermal lattice Boltzmann method in simulating microscale gas flows

L. Zheng1, Z. L. Guo1 and B. C. Shi2

1  National Laboratory of Coal Combustion, Huazhong University of Science and Technology - Wuhan 430074, PRC
2  Department of Mathematics, Huazhong University of Science and Technology - Wuhan 430074, PRC

zlguo@mail.hust.edu.cn

received 1 February 2008; accepted in final form 31 March 2008; published May 2008
published online 14 May 2008

Abstract
The lattice Boltzmann equation (LBE) has been shown to be able to describe important rarefied flow phenomena in the nearly continuum limit. However, the specific slip boundary condition for this promising method is still one of the critical issues. In this paper, two kinetic boundary conditions are proposed for simulating thermal microscale gas flows: one is the combination of the equilibrium distribution and specular-reflection scheme, another is the combination of the equilibrium distribution and bounce-back scheme. The two boundary conditions are then analyzed for the Couette flow. It is found that some discrete effects exist in the boundary conditions, which should be considered to ensure an accurate slip boundary condition. A correction method is then proposed to minimize the discrete effects, and numerical results demonstrate that the improved boundary schemes can yield much better results than the original ones.

PACS
47.11.-j - Computational methods in fluid dynamics.
44.10.+i - Heat conduction.
47.45.-n - Rarefied gas dynamics.

© EPLA 2008