Issue
EPL
Volume 86, Number 6, June 2009
Article Number 60003
Number of page(s) 5
Section General
DOI http://dx.doi.org/10.1209/0295-5075/86/60003
Published online 06 July 2009
EPL, 86 (2009) 60003
DOI: 10.1209/0295-5075/86/60003

Exploiting the effect of noise on a chemical system to obtain logic gates

Sudeshna Sinha1, J. M. Cruz2, T. Buhse3 and P. Parmananda2, 4

1   The Institute of Mathematical Sciences - Taramani, Chennai 600 113, India
2   Facultad de Ciencias, UAEM - Avenida Universidad 1001, Colonia Chamilpa 62209, Cuernavaca, Morelos, Mexico
3   Centro de Investigaciones Químicas, UAEM - Avenida Universidad 1001, Colonia Chamilpa 62209, Cuernavaca, Morelos, Mexico
4   Department of Physics, Indian Institute of Technology Bombay - Powai, Mumbai 400076, India

sudeshna@imsc.res.in

received 6 February 2009; accepted in final form 29 May 2009; published June 2009
published online 6 July 2009

Abstract
Small added noise has been predicted to direct certain classes of chemical systems towards a specific enantiomeric direction, with the dependence of product asymmetry on noise levels being non-monotonic and nonlinear. Associating the product selection in such chemical reactions with different outputs, and varying noise levels to encode the inputs, we observe that the response of the system mirrors the input-output relations of different fundamental logic operations. So the complex enantioselection, under the influence of noise, allows the chemical system to effectively behave as a logic gate. This observation may have potential applications in the design of chemical gates, as well as provide understanding of the information processing capacity of naturally occurring chiral symmetry-breaking chemical systems, with noise acting as the logic pattern selector.

PACS
05.45.-a - Nonlinear dynamics and chaos.
02.50.Ey - Stochastic processes.
82.20.-w - Chemical kinetics and dynamics.

© EPLA 2009