Issue |
Europhys. Lett.
Volume 62, Number 3, May 2003
|
|
---|---|---|
Page(s) | 452 - 458 | |
Section | Interdisciplinary physics and related areas of science and technology | |
DOI | https://doi.org/10.1209/epl/i2003-00417-3 | |
Published online | 01 April 2003 |
Trapping intermediates in the melting transition of DNA oligomers
Department of Physics and Astronomy, University of California Los
Angeles Los Angeles, CA 90095-1547, USA
Received:
15
November
2002
Accepted:
19
February
2003
We present a new method to study the melting transition of DNA oligonucleotides, which can quantify the presence of intermediate states. The approach is to combine UV spectroscopy with a method based on trapping intermediate states by quenching. The measurements yield both the average fraction of open base pairs (f) and the fraction of completely open molecules (p). If intermediate (partially open) states are not present, then p = f throughout the transition. In the presence of intermediate states, p < f. We demonstrate the method on the example of a 48mer sequence which is designed to open at one end and thus have intermediate states during melting. Then we show a different sequence design where the melting appears essentially as a two-states process. These experiments demonstrate the role played by end effects and sequence design in controlling the nature of the melting transition for DNA oligomers.
PACS: 87.15.-v – Biomolecules: structure and physical properties
© EDP Sciences, 2003
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.