Issue |
Europhys. Lett.
Volume 65, Number 1, January 2004
|
|
---|---|---|
Page(s) | 82 - 88 | |
Section | Condensed matter: electronic structure, electrical, magnetic, and optical properties | |
DOI | https://doi.org/10.1209/epl/i2003-10043-1 | |
Published online | 01 December 2003 |
Stability and electronic structure of phosphorus nanotubes
Department of Physics, Oklahoma State University - Stillwater, OK 74078-3072, USA
Received:
14
February
2003
Accepted:
14
October
2003
First-principles density-functional theory (DFT) calculations of
single-walled phosphorus nanotubes constructed from the
black-phosphorus (b-P) layered allotrope show that their strain
energies per atom for radii above 0.6 are comparable to
the strain energies predicted for experimentally observed
single-walled carbon nanotubes with radii of 0.5
. Our DFT
calculations further predict that the nanotube structures are
energetically more stable than the corresponding strips for radii
larger than 0.55
, suggesting that the synthesis of
phosphorus nanotubes (PNTs) could be possible. We find that
polarized basis sets including d functions are necessary for
accurate treatment of the strain energy, and these basis sets
lead to strain energies per atom substantially larger than DFT
strain energies of single-walled carbon nanotubes at similar
diameters. We have also found that all the PNTs studied are
semiconducting regardless of their helicity, in contrast with the
band structures of carbon nanotubes. The band gaps increase and
converge to the value of the band gap of a black-phosphorus
single puckered layer, 1.8
, as the radius is increased.
For a fixed radius, the band gaps increase when increasing the
chiral angle. Our DFT calculations are in very good qualitative
and quantitative agreement with earlier density-functional
tight-binding calculations of black-phosphorus single puckered
layers and nanotubes.
PACS: 73.22.-f – Electronic structure of nanoscale materials: clusters, nanoparticles, nanotubes, and nanocrystals / 62.25.+g – Mechanical properties of nanoscale materials / 73.63.Fg – Nanotubes
© EDP Sciences, 2004
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.