Issue |
EPL
Volume 77, Number 5, March 2007
|
|
---|---|---|
Article Number | 50002 | |
Number of page(s) | 5 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/77/50002 | |
Published online | 16 February 2007 |
Steady-state balance conditions for molecular motor cycles and stochastic nonequilibrium processes
Max Planck Institute of Colloids and Interfaces - Science Park, 14424 Potsdam, Germany
Received:
6
November
2006
Accepted:
4
January
2007
Molecular motors and nanomachines are considered that are coupled to exergonic processes which provide energy input to these motors and allow them to perform work. The motor dynamics is described by continuous-time Markov processes on a discrete state space, which can contain an arbitrary number of cycles consisting of two dicycles with opposite orientation. For the steady state of such a motor, the statistical entropy produced during the completion of each dicycle is expressed in terms of its transition rates. Identifying this statistical entropy with the heat released by the motor and using the first law of thermodynamics, we derive steady-state balance conditions that generalize the well-known detailed balance conditions in equilibrium. Our derivation is rather general and applies to any nonequilibrium system described as a Markov process. For molecular motors, these balance conditions depend on the external load force and can be decomposed into a zero-force and a force-dependent part.
PACS: 05.70.Ln – Nonequilibrium and irreversible thermodynamics / 87.16.Nn – Motor proteins (myosin, kinesin, dynein) / 82.39.-k – Chemical kinetics in biological systems
© Europhysics Letters Association, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.