Issue |
EPL
Volume 80, Number 5, December 2007
|
|
---|---|---|
Article Number | 50004 | |
Number of page(s) | 6 | |
Section | General | |
DOI | https://doi.org/10.1209/0295-5075/80/50004 | |
Published online | 29 October 2007 |
AC-induced superfluidity
Institut für Physik, Carl von Ossietzky Universität - D-26111 Oldenburg, Germany
Corresponding author: eckardt@theorie.physik.uni-oldenburg.de
Received:
4
September
2007
Accepted:
4
October
2007
We argue that a system of ultracold bosonic atoms in a tilted optical lattice can become superfluid in response to resonant AC forcing. Among others, this allows one to prepare a Bose-Einstein condensate in a state associated with a negative effective mass. Our reasoning is backed by both exact numerical simulations for systems consisting of few particles, and by a theoretical approach based on Floquet-Fock states.
PACS: 03.75.Lm – Tunneling, Josephson effect, Bose-Einstein condensates in periodic potentials, solitons, vortices, and topological excitations / 03.75.Kk – Dynamic properties of condensates; collective and hydrodynamic excitations, superfluid flow
© Europhysics Letters Association, 2007
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.