Issue |
EPL
Volume 89, Number 4, February 2010
|
|
---|---|---|
Article Number | 48002 | |
Number of page(s) | 6 | |
Section | Interdisciplinary Physics and Related Areas of Science and Technology | |
DOI | https://doi.org/10.1209/0295-5075/89/48002 | |
Published online | 04 March 2010 |
Two-dimensional descent through a compressible atmosphere: Sequential deceleration of an unpowered load
Department of Physics, Trinity College - Hartford, CT 06106, USA
Corresponding author: mark.silverman@trincoll.edu
Received:
1
December
2009
Accepted:
1
February
2010
Equations, based on Rayleigh's drag law valid for high Reynolds number, are derived for two-dimensional motion through a compressible atmosphere in isentropic equilibrium, such as characterizes the Earth's troposphere. Solutions yield horizontal and vertical displacement, velocity, and acceleration as a function of altitude and ground-level temperature. An exact analytical solution to the equations linearized in the aero-thermodynamic parameter is given; in general the equations must be solved numerically. The theory, applied to the unpowered fall of a large aircraft stabilized to flat descent by symmetrical, sequential deployment of horizontal and vertical decelerators, shows that such an aircraft can be brought down with mean peak deployment and impact decelerations below 10g.
PACS: 89.20.-a – Interdisciplinary applications of physics / 89.20.Bb – Industrial and technological research and development / 89.40.Dd – Air transportation
© EPLA, 2010
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.